Locul unde dezarhivez visele mele de o secundă

Gabi (Gabriela-Mimi Boroianu) zice că eu pot scoate o poveste extraordinară din orice întâmplare banală. M-a citit! Așa cum fac femeile cu mine și eu le las… Treaba e, că trebuie să ai statut de voyeur. Amănuntul, mișcarea, secunda, sunt prietenii mei.

Acolo, unde alții trec grăbiți, eu mă opresc și absorb ca o sugativă.

Mai târziu, mult mai târziu, impresiile se sedimentează, se ordonează cumva în sertarele creierului meu și, la un declic, la o suficientă acumulare cantitativă, misterios, devin de nestăvilit, își doresc o viață proprie cu atâta ardoare încât nu mai sunt decât, umil, sclavul lor.

Mă lasă sfârșit, ca după un orgasm prea îndelung, dar cumva fericit. Fericit atunci când totul capătă un contur comprehensibil, realistic, dar în același timp diferit, cumva ideatic, ca un vis care te urmărește îndeajuns de mult încât nu-l mai poți separa de cotidian.

 

 

 

                                                           

Reclame

Parcă-s fete… (I)

Canicula e infernală.

Toate, de după schismă, fuseseră așa, dar anul ăsta arșița devenea de-a dreptul insuportabilă. Simți cum stropi de sudoare i se preling de pe frunte și picură pe blana cafenie, lăsând pete mai întunecate. Se ridică și aruncă, cu un gest profesional, stetoscopul pe de după gât: Mai degrabă mă boșorogesc eu…

− Și, ce zici doctore, o să fie cu noroc?

Eliot Visser se scărpină după ureche:

− Sarcina merge bine. De mică a tolerat radiațiile, iar faptul că-i un singur pui e încurajator. Inima-i bate bine și puternic. S-ar putea să te scoți, Larry!

− Hai să bem ceva, că ai bătut drum lung.

− Nu mai beau poșirca aia a lui John, îmi face rău. Mersi oricum. Hai! Că trebuie să ajung la frații Hinton.

− Te conduc.

Caii mergeau la trap prin pulberea gri, ridicând fuioare de praf, iar cei doi bărbați se adânciseră fiecare în gândurile lui.

− Ce-i asta?

Undeva, la orizont, un punct negru se mărea văzând cu ochii. O sferă neagră, cam de juma’ de metru diametru, se apropie de călăreți și începu un ocol larg.

Larry descălecă, trase pușca din toc și, sprijinind-o de spinarea calului, luă obiectul în cătare:

− O fi o drăcovenie de-a ălora din buncăre…

− Off! De când vă zic că nu mai e nimeni, în nici un buncăr. Dacă ar fi fost, în cincisprezece ani ar fi apărut. Buncărele au fost printre primele țintite. N-a scăpat nici unul.

− Și-atunci?

Drăcovenia se apropiase, fără frică, la câțiva metri. Plutea silențios și era atât de neagră încât părea o gaură în cer. Doar privită cu coada ochiului părea să-și trădeze forma fizică.

− Nu știu, bărbate. Doctorul simți un fior pe șira spinării. Unde-ai mai pomenit așa ceva?

− Vedem noi acum… Larry luă linie de ochire și trase.

În afară de zgomotul armei și tropăitul cailor neliniștiți nu se întâmplă nimic.

− Am nimerit-o! Jur că am nimerit-o. Puse iar arma la ochi, dar Eliot îl apucă de umăr:

− Unde ai mai pomenit tu așa ceva… Larry, asta nu-i de pe aici, de la noi de pe pământ. Larry, se întâmplă lucruri extraordinare!

Sfera se apropie și mai mult. Se roti în jurul lor și staționă ca pentru inspecție.

Luându-și inima în dinți, doctorul făcu un pas în față.

− Ai grijă, Eli!

− Uită-te la cai, Larry. Uite-te la cai!

Caii ciuliseră urechile spre sferă și amușinau cu nările fremătând. Larry coborî țeava armei.

Se apropiară de obiect. De aproape părea mai natural. O sferă dintr-un metal negru cu puzderie de mici înțepături, ca de ac, pe toată suprafața.

Doctorul întinse mâna și-o atinse. Era călduță și plăcută la pipăit.

Din fundul gâtului uscat îi ieși un geamăt:

− Unde ați fost până acum? Ați venit târziu, prea târziu!

*

Frații Hinton se baricadaseră în casă, iar doctorul trebui să dea dovadă de toată puterea lui de convingere pentru a-i face să deschidă ușa.

− Ai văzut-o și tu? Ai văzut-o?

− Am și atins-o.

Realiză că a făcut o mare greșeală. Cei doi frați puseră mâinile pe arme.

− Huooo! Halal bărbați! Măcar Larry a tras în ea…

− A nimerit-o? Frații lăsară armele și, curioși, se apropiară: A nimerit-o?

− Da.

− Și?

− Nimic. Glonțul a dispărut ca și când n-ar fi fost.

− Ți-am zis eu? Făcătură diavolească. Încep să iasă de sub pământ.

− Terminați cu prostiile. Sunteți oameni în toată firea. Ce credeți că era? Coiul lui Scaraoski?

− Unde-s surorile?

Cumva rușinați, cei doi frați se buluciră dând cap în cap:

− Le-am ascuns în beci.

Kate și cu Dolores ieșiră cu greu prin gaura strâmtă ce ducea în beci.

Amândouă erau însărcinate în aceiași lună, motiv de mare mândrie pentru frați.

− E bine. Inimile bat corect și puternic. O să aveți copii sănătoși.

− Cât să mai fie, doctore?

− Cam două luni, două luni și jumătate…

*

− Doctore, vin!

Larry sări de pe calul, tot numai spume, și năvăli în casă.

− Cine vine, omule?

− Alienii, alienul de-ai pus mâna…

Eliot rămase cu mâinile în aer.

Trecuseră doi ani și aproape uitase extraordinara întâmplare.

− Ce spui tu acolo? A apărut iar sfera aia?

− Daaaa. Da’ nu aia. Una babană de data asta. A aterizat în deșert cam la zece kilometri de ferma mea. Am văzut-o cum cobora. Tot așa, ca aia mică. Nici un sunet. Și-i neagră ca smoala.

Doctorul se lăsă greu pe un scaun:

− Deci până la urmă s-au hotărât, bâigui privindu-și degetele care tremurau ușor. Au venit.

− Ce ne facem, doctore? Lumea a trimis după tine. Oamenii sunt speriați mai ales că știu că tragi degeaba cu armele în ei…

− Să mergem acolo. Va fi ce-o să fie!

*

It’s Official: The Definition of a Kilogram Has Changed

Since the 19th century, scientists have based their definition of the fundamental unit of mass on a physical object — a shining platinum iridium cylinder stored in a locked vault in the bowels of the International Bureau of Weights and Measures (BIPM) in Sevres, France.
A kilogram was equal to the heft of this aging hunk of metal, and this cylinder, by definition, weighed exactly a kilogram. If the cylinder changed, even a little bit, then the entire global system of measurement had to change, too.
With Friday’s vote, scientists redefined the kilogram for the 21st century by tying it to a fundamental feature of the universe — a small, strange figure from quantum physics known as Planck’s constant, which describes the smallest possible unit of energy.
Thanks to Albert Einstein’s revelation that energy and mass are related, determining exactly how much energy is in that unit can let scientists define mass in terms of Planck’s constant — a value that should hold up across space and time — rather than relying on an inconstant metal cylinder. (Mass determines something’s weight, and for most purposes mass and weight are interchangeable.)
The redefinition is the result of a decades-long, worldwide quest to measure Planck’s constant precisely enough that the number would stand up to scientific scrutiny.
Though the newly defined kilogram won’t affect your bathroom scale, it will have practical applications in research and industries that depend on meticulous measurement.
Friday’s vote is mostly a formality; everyone involved knew the resolution would pass. But to Jon Pratt, one of the leaders of that global effort, the event is about more than symbolism, bigger than business and beyond even physics.
In this era of violence and vitriol, when it seems there’s so little on which people can agree, Pratt said, the redefinition represents something sublime.
It is an acknowledgment of an immutable truth — that nature has laws to which all of us are subject. And it’s one more step toward a lofty dream — that, in understanding nature’s laws, scientists can help build a better world.
The scientist grinned, sheepish. „It’s an emotional moment,” he said. „I’m just really proud of our species.”
Kilocomparison web

A half-kilogram standard at NIST versus the watt balance at NIST (Salwan Georges/The Washington Post)

Leaving behind ‘Le Grand K’

At the National Institute of Standards and Technology (NIST) in Gaithersburg, Md., where Pratt works, measurement is often described as the „invisible infrastructure” of the modern world. Everything a person does — whether it’s checking a clock, forecasting the weather, cooking a meal, building a rocket, signing a contract, waging a war — requires measurements of some kind.
The International System of Units, or SI, is what allows us to communicate measurements around the globe. This system, which has its origins in the heady days of the Enlightenment, was meant to end the bickering over the number of Spanish vara in a British furlong and ease the anxieties of a merchant who bought goods in the Netherlands, where the unit of weight was based on the amount of fish that could fit in a ship’s hold, and sold them in France, where weight was tied to the heft of a wheat grain.
The motto of one of the system’s creators, „for all times and for all people,” is among Pratt’s favorite phrases.
„It’s such an optimistic view,” Pratt said. „He just imagined this business of science . . . was going to be a great force for freedom and a great force for moving the world forward.”
In 1875, the signing of the Treaty of the Metre made the system official. Two platinum and iridium prototypes — a meter-length bar and a kilogram-mass cylinder — were forged to serve as the standard units for the whole world. The BIPM distributed copies of each prototype to the signatory nations; the century-old U.S. national kilogram still sits in a glass case in a locked room down the hall from Pratt’s lab.
As science and commerce advanced, the SI expanded to include units for other kinds of measurements and the definitions were revised to allow for greater and greater precision. The meter prototype was ditched in favor of the distance light travels in a vacuum in one 299,792,458th of a second. The length of a second was pegged to the cycles of radiation of the element cesium.
These values — the speed of light, the behavior of atoms, the nature of electromagnetism — are fundamental features of nature that do not change whether the observer is on Earth or Mars, whether it’s the year 1875 or 2018.
But the kilogram prototype, known as „Le Grand K,” was made by humans and is subject to all our limitations.
It is inaccessible — the safe containing the cylinder can be opened only by three custodians carrying three separate keys, an event that has happened fewer than a dozen times in the object’s 139-year history.
And it is inconsistent — when Le Grand K was examined in the 1980s, it weighed several micrograms less than it was supposed to.
This meant that anyone who made products based on the standards had to reissue their weights. Manufacturers were furious. Lawmakers were called. Metrologists, people who study measurements, were accused of incompetence.
So, in a 2014 meeting at the BIPM, the metrology community resolved to redefine the kilogram. But the value of Planck’s constant was still uncertain, and scientists couldn’t redefine the kilogram without it.

‘Chasing perfection’

It has been more than 100 years since the quantum physicist Max Planck discovered that energy is expressed in discrete units — that is, it’s „quantized.” But his constant — a figure that describes the size of these energy packets — has been hard to pin down.
There are only two experimental setups that allow scientists to calculate this number, and both require rare and expensive tools.
One technique involves counting all the atoms in a perfectly round silicon sphere.
The second option uses an exquisitely accurate weighing machine known as a watt balance, which measures an object’s mass by calculating the force needed to lift it.
Kilogram SG04

Jon Pratt with the watt balance instrument at NIST. (Salwan Georges/The Washington Post)

This is no ordinary scale; it took a pair of British scientists several decades to invent and refine the instrument, and there are only two in the world powerful enough to meet the BIPM’s high standards for precision.
One is in Canada. The other sits inside Pratt’s lab in the NIST basement.
„It really is a beautiful instrument,” Pratt said during a visit this week to the steel-encased room where the balance is stored. „I like to just come here and stare at it.”
The enormous metal machine, which took five years to build, is as tall as a professional basketball player and shiny as a disco ball, with a tungsten carbide fulcrum on which the balance hinges and a one-ton magnet that helps generate a force. While experiments are run, the entire balance is placed inside a vacuum chamber.
Anyone who operates the instrument must wear a hairnet, a lab coat and bootees. Pratt and his colleagues measure every factor that could possibly affect their result, from the temperature of the room to the strength of Earth’s gravity.
„In a physics sense, we’re really chasing perfection here,” Pratt said. „We really need things to behave just as their idealized versions.”
The 2014 resolution required that at least one instrument would need to calculate Planck’s constant to an uncertainty of just 20 parts per billion — or within 0.000002 percent of what is thought to be the correct number.
On June 30, 2017, the day before the deadline to submit a value to the BIPM’s weights and measures committee, Pratt and his team finally published a result that met this standard.
Planck’s constant is equal to 6.626069934 x 10-34kg∙.m2/s, they said. And their uncertainty was just 13 parts per billion.
That number may be barely intelligible to the casual observer. But to Pratt, measuring it felt for a moment like some cosmic curtain had been lifted, revealing the innermost workings of the universe.
Here in the echoing basement of an obscure federal agency, he and his crew of hair-netted nerds had gotten as close to one standard for perfection as any human has ever been.
They had transcended their human biases and earthly flaws to make an observation so precise it will work „for all times and for all people” — or at least, until the day when scientists are able to pull back another fold of the curtain, eliminating one more degree of uncertainty about this fundamental fact of physics.
Pratt and his colleagues are not the only scientists who have spent the better part of the past decade in pursuit of Planck’s constant.
Researchers using the watt balance in Canada have achieved a measurement with even less uncertainty than NIST’s. Teams in Germany and Japan produced similarly precise measurements using the silicon-sphere technique.
But not all the measurements agreed. In the metrology community, where careers can be staked on quibbles over decimal points, this discrepancy could have been catastrophic.
„There was a lot of hemming and hawing, and at one point there were questions about whether [the vote] would even happen,” Pratt said.
But that debate, too, was an important part of the process. Only through repeated observations, refutations and confirmations does an idea become a globally accepted fact. It’s what makes science bigger than scientists; it’s how we establish that something is true.
Still, Pratt didn’t wait for the debate to end to get NIST’s value for Planck’s constant tattooed on his forearm — the 10-digit number and an illustration of a statue clutching a meter bar and a kilogram cylinder.
And above it, in French, were the words that have guided metrologists since the beginning: A tous les temps, a tous les peuples.
Physics-Astronomy.org

Buran, naveta spațială rusească.

Puțină lume știe că și rușii au avut un program spațial similar cu cel al americanilor cu naveta spațială, dar au renunțat la el pentru că specialiștii au avertizat că nu este fiabil, iar economiștii că nu se susține financiar.

În acest clip se vede prima și singura lansare a acesteia și reîntoarcerea la sol pe pilot automat, o premieră la acea vreme.

It’s Official: Researchers Have Discovered A Second Earth

 
Researchers have discovered a planet located in the Proxima Centauri system, one of the closest stars to Earth which they believe harbors liquid water and potentially alien lifeThe planet, named Proxima B is believed to be around 1.3 times the size of our planet and has the ideal temperature on the surface for water in a liquid state to exist.Proxima B is located four light years away from Earth –over 25 TRILLION MILES—meaning that in order to visit the planet in the near future, future generation would have to come up with super-fast spacecraft that would allow them to travel to the Proxima Centauri system with ease.If the planet proves to be ‘a SECOND Earth’ it could become one of the best options for future human colonization.Researchers believe that the temperature on the surface of the planet could be between -90 degrees Celsius and 30 degrees Celsius.
 
According to researchers, Proxima B may be the best opportunity we have come across to find DIRECT evidence of the existence of Alien Lifeforms outside of out solar system.The planet which has already been dubbed ‘a second Earth’ is located at an ideal distance from its host star for liquid water to exist, which means that life as we know it is very likely to exist.Proxima B is the closest exoplanet we have ever discovered, and according to researchers, a mission to the planet to search for signs of life could be something achievable within our lifetime.
 
The distance from our planet to Proxima B may seem insurmountable, but it is actually formidably shorter when compared to other candidates to host life. This means that Proxima B could become the first objective for future interstellar travel.
Proxima Centauri is a red dwarf located in the constellation Centaurus. The star itself is too weak to be observed with the naked eye, but in recent months, scientists have not taken their eyes off of it.
In fact, during the first half of this year, Proxima Centauri was followed regularly with the HARPS spectrograph installed on the 3.6-meter telescope of the European Southern Observatory (ESO) in La Silla (Chile) and monitored simultaneously with other instruments from around the world.
 
“Many exoplanets have been found, and many more will be found, but searching for the closest potential Earth-analogue and succeeding has been the experience of a lifetime for all of us,” Dr. Guillem Anglada-Escudé, lead author of the paper, said.“Many people’s stories and efforts have converged on this discovery. The result is also a tribute to all of them. The search for life on Proxima b comes next.”
There are already two papers which describe and go through the potential habitability of Proxima B.
Future observations, for example using the 39-m ESO E-ELT telescope under construction in Chile, will allow further investigation of Proxima b and of the hypothetical presence of a thick atmosphere and a liquid water reservoir. If this turned out to be the case, it would be very exciting that the nearest star to the Sun also hosts the nearest habitable (perhaps inhabited?) planet.
Physics-Astronomy.org

ruine în Paradis — „Afectivități conștiente”

Chris Alcantar of Concow plays with his dog in the evacuee camp near Walmart in Chico Thursday. (Carin Dorghalli – Enterprise-Record) Deer visit the aftermath of the Camp Fire in Concow on Wednesday. (Dan Reidel – Enterprise-Record) Camp Fire evacuees rest at Neighborhood Church in Chico.(Ray Chavez/Bay Area News Group) PHOTOS „SANTA CRUZ SENTINEL”, CALIFORNIA TRUMP […]

via ruine în Paradis — „Afectivități conștiente”